If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-7=53
We move all terms to the left:
3x^2-7-(53)=0
We add all the numbers together, and all the variables
3x^2-60=0
a = 3; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·3·(-60)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*3}=\frac{0-12\sqrt{5}}{6} =-\frac{12\sqrt{5}}{6} =-2\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*3}=\frac{0+12\sqrt{5}}{6} =\frac{12\sqrt{5}}{6} =2\sqrt{5} $
| (f)6=12 | | 1−x5=4 | | 137=-4x-7(-5x+) | | 45x-2=2(9x+3) | | (x-1)(x-7)=(x+1)(x+3) | | 3s=23-10 | | s+2s=0 | | y-41=2(y-61) | | 8e-(e+1)+9=78 | | S+10=23-2s | | C=65+40m | | 10^2x+8=514 | | (x-15)+5=90 | | 3=21-t | | s+32=2s | | 4x2−6x+16=0 | | s-2=2(s-50) | | -53=-x/7 | | a²=a+8 | | y-11=y-52 | | (3x²+4x)(4x+3)=36x²+40x+12 | | 6x²-9x=0 | | 3t-5=-21t= | | 56+w=61 | | -5(-7x+9)=165 | | 11x-2x+8=22+58 | | -4(5x-9)=256 | | -x+2=38 | | (y+3)(y-5)=y^2-4y+5 | | y-20=80 | | 20=5(r-4) | | d+4=36 |